Quantifying and Characterizing Tonic Thermal Pain Across Subjects From EEG Data Using Random Forest Models
نویسندگان
چکیده
منابع مشابه
Quantifying the Germination of Fagopyrum esculentum Moenc. Using Regression and Thermal-Time Models
Extended Abstract Introduction: Germination is considered the first and most important stage of establishment and consequently, successful competition which is influenced by genetic and environmental factors. Among the environmental factors influencing the germination, temperature and light are the most important ones. Using different models, the germination response of seeds to temperature c...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملClassifying EEG Data into Different Memory Loads Across Subjects
In this paper we consider the question of whether it is possible to classify n-back EEG data into different memory loads across subjects. To capture relevant information from the EEG signal we use three types of features: power spectrum, conditional entropy, and conditional mutual information. In order to reduce irrelevant and misleading features we use a feature selection method that maximizes...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملInvestigation of Random Subspace and Random Forest Regression Models Using Data with Injected Noise
The ensemble machine learning methods incorporating random subspace and random forest employing genetic fuzzy rule-based systems as base learning algorithms were developed in Matlab environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. The accuracy of ensembles generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Biomedical Engineering
سال: 2017
ISSN: 0018-9294,1558-2531
DOI: 10.1109/tbme.2017.2756870